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Turbulent wake solutions of the Prandtl @ equations
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A derivation of the Navier-Stokea equations for spatially dependedtis presented. It is shown that an

extra term in the equation is necessary to ensure the conservation of momentum. The Prandtl form of these
variablea equations are determined for both planar and axisymmetric pressure-gradient-driven boundary-layer
flows correcting previous work on the subject. The Prandtl equations are then solved analytically for four
different asymptotic wake flows: the classical planar wake, the classical axisymmetric wake, the planar drag-
less wake, and the axisymmetric dragless wake. Least-squares fits of the theoretical solutions with available
turbulent mean-flow velocity data for classical planar and axisymmetric wakes are given. We point out that the
dissipation coefficient does not have to be equal to the kinematic viscosity, and its numerical value may be
estimated from experimental data.
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I. INTRODUCTION mental data. We also note that even though authors in Ref.
[1] achieved excellent fit to experimental data in channels
The Lagrangian averaged Navier-Stoke¢NS-«) equa-  and pipes forA = v, the analytical expression for their fitting
tions were recently proposdd] as a model for averaged curves will remain the same in the case whiers arbitrary,
velocity fields in turbulent flow. These equations have thesince for pipe and channel flows the solutions of Hg.are
following form: if u(x,t) is the averagedvelocity of the  9iven by Av=const. Therefore, an ongoing effort is under
turbulent flow, ande is a constant representating the rmsWay to derive a variety of test cases using this model for

(root mean squajeof Lagrangian fluctuations, them(x,t) comparison with available experimental data. Turbulent
satisfies ' ' boundary-layer flows are ideal for this task, since in the

equations for these flondPrandtla equations, see belgw
N we can scale out the value &f and fit the shape of velocity
E+(u-V)v+vJ~Vuj+VQ=AAv, (1a profile using only one parametéa rescaledr). The dissi-
pation coefficientA affects only the thickness of the flow
and can be deduced from experimental data independently.

V-u=0, (1b) Hence, only a one-parameter fit to experimental data is re-
quired.
v=u—a’Au, (10 In the current study, we determine the asymptotic form of

) ] mean turbulent wake profiles described by the Prandtl limit
where A plays the role of viscosity and E@lc) connects  of the NS« equations in both two and three dimensions,

momentumv and velocityu through the Helmholtz operator. jth equal consideration given to classical wakes and to mo-
In previous work on the subject, the constantvas takento  mentumless wakes behind self-propelled bodies.

be equal to the kinematic viscosity of the fluidso that Eq. In Sec. Il, a derivation of the generalized NSequations,

(1) reduces to the Navier-Stokes equation @s-0. This  valid for spatially varyinge, is outlined. In Sec. lIl, the
formulation is mathematically interesting, since the existencehin-layer approximation to the generalized NSequations,
and unigueness of solutions have been established fddEq. herein referred to as the Prandtiequations, is developed for

in three dimension$2,3], whereas the same results for the both planar and axisymmetric boundary-layer flows. With
Navier-Stokes equations are missing. From the practicahe exception of stagnation-point flows and a couple of other
point of view, systentl) permits modeling of turbulent flows simple flow configurations, the cross-stream thickness of a
whose best fit is determined by the choicenofThe deriva-  turbulent boundary layer varigicreaseswith the stream-
tion of the Eulera equationdi.e., systen(1) with A=0] is  wise direction, taken here to bein which case it is entirely
rigorous, but the introduction of the viscous term on theprobable thatr will vary with x.

right-hand side of Eq(1a is ad hoc In particular, we be- Recently, a form of the Prandtt boundary-layer equa-
lieve that the constant in front of the dissipation term does tions was reported by Cheskidp4]. Unfortunately, we have
not have to be equal to kinematic viscosity, as the limit offound Cheskidov’s equations to be incorrect owing to their
a—0 is not physical. Indeedy— 0 corresponds to the flow failure to conserve streamwise momentum flux. Indeed, it
becoming laminar, since is the rms of Lagrangian fluctua- was this inconsistency that motivated our reconsideration of
tion of the trajectory. The coefficients and « therefore are the results in Ref[1] to seek a more general form of the
dependent on the flow parametéirs particular, on the suit- NS-a equations valid for streamwise varyirg We discuss
ably defined Reynolds numbeaind must be fitted to experi- the physical and mathematical differences between our and
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Sec. lll. —+Uu-V|=— \% —Vﬁ—D=O. (7)

+——Vu+=-—
- _ _ at Dou Doy D X
Application of the generalized N&-equations to mean

turbulent wake flows, both classical and momentum-free, arghe Euler-Poincarequations are identical to those obtained
presented in Secs. IV and V. To leading order, the spatighy Chenet al. [1] but with the additional term D/aF/dX
dependence ok does not enter into the analysis because theyrising from the explicit spatial dependence of the Lagrang-

weak velocity defect in the far wake permits a linearizationjan, For analysis of average velocities in turbulent flows, we
of the advection terms. However, further corrections to thesmploy the Lagrangian introduced in REf], viz.,

asymptotic solutions would include a contribution from the
variability of «.

Cheskidov’s version of the Prandtl equations at the end of ( 9 ) 18 1 6L 1 oF SL

D
E:f d3X(§[|u|2+a2|Vu|2]+q[<de(I+§X)>—D]
Il. THE NAVIER-STOKES a EQUATIONS

FOR VARIABLE a +(<§de(|+§x)>~V)q], 8

For clarity, we begin our formulation of the generalized
NS-a equations for variabler with a brief derivation of the  \hereD is given by Eq.(2), q is the Lagrange multiplier for
Euler o equations obtained through application of variationalthe incompressibility conditio® —1=0, &is the fluctuation
methods as given in Reffl]. Lagrangian coordinate$(a,t)  of Lagrangian position, angt - - is the ensemble average of
denote the position of a fluid particle at timeriginating at  fjyctuations. As usual, it is assumed thats;) = 5ija2_ Tak-

point a. The kinetic energy is given byd3aX2. Fluid in- ing the variation of the averaged Lagrangi@nfurnishes the
compressibility is enforced by the requirement generalized Eulex equations
—del ) = T UV vt VUt S (Vad)| VU2 VQ=0, (9
D=de “a =1. 2 S TuV|vie vy 5( a®)|Vu| Q=0, (93
Introduction of a Lagrange multiplierto account for Eq(2) V.-u=0, (9b)

v=u—V-(a?Vu). (90)

leads to the energy functional
sl oo X
L= d°g X“+qj1—de Galll (3 Performing the spatial integration shows that B indeed
conserves momentum flux. More detailed derivation of Eqg.

Taking the variation of£ with respect toX and using the (92 is given in Ref[5]. The final step is to add the momen-
relation In(detM)=tr(In M) for square matrixM, we ar-  tum diffusion term to the right-hand side of H§a) to obtain

rive at the Euler equations in Lagrangian coordinates the generalized N& equations
y P 1
X—-Vg=0. (4) S5 TUV v+ Vui+ 5 (Va?) | Vu?+ VQ=AAv

In Eulerian coordinates{=u andX=u,+ (U- V)u, Eq. (4) (10

reduces to the familiar form of Euler equations in Eulerian, gjiq for spatially dependent. Equations(9b) and (9¢) are
coordinates, in whicly plays the role of the thermodynamic unchanged.

pressure. Hera is the instantaneous particle velocity, not to
beI cqtnfused withu which is the averaged turbulent flow || tHE TWO-DIMENSIONAL PRANDTL EQUATIONS
velocity.
Let us now consider a more general Lagrangian which The Prandtl limit of the generalized N&-equations in
depends on the spatial coordinates two dimensions are now obtained. As usual, we chogsg) (
as streamwise and cross-stream coordinates, respectively,
1-d (ax ] with corresponding velocitiesu( ,u,). If the typical length
[— e —
Jda

: (5) scale isL, and the typical velocity iJ, , the standard
boundary-layer scalingx=L, X, y=e€L,Y, u,=U,U,,

HereF is an arbitrary function oK andX and in this case,

the Euler equations are

L:f d3a{|:(>'<,x>+q

anduy,=e€U,, wheree<1 is the boundary-layer slenderness

parmeter. Assuminge=a(x) only, the scaling a(x)

— €L, a(X) is employed; note that lower caseis retained

as thescaledvariable for notational simplicity. Balancing the
_____ Vq=0. (6) leading-order viscous term with the leading-order inertia
dt ox X terms in the x component of Eq. (93 yields e

=yA/(L U,). Thus, the thickness of boundary layer is pro-
Now in Eulerian coordinates, the variational equation for theportional toRXl’z, whereR, is the Reynolds number based
velocity u=X is on A. For laminar boundary layer$ is proportional to
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R, Y2 whereR,=LU, /v. This clearly shows that the ef- flux is afforded by the coefficient in front of the last term on
fective viscosityA cannot be equal to the kinematic viscosity the left-hand side of Eq148 being equal to 1, and not 1/2
v, since experiment§6] show that for turbulent boundary as would be obtained from a straightforward application of
layers,e>R, 2. Now with all scales fixed, the streamwise boundary-layer scaling to the N@equations for constant,

and cross-stream components of ERg) are, respectively, as was done by Cheskid@4] in the context of Blasius flow
along a flat plate. Cheskidov's version of the Pramd#qua-

IV IVy Uy, 1 da?[du,\? tions fails to conserve streamwise momentum in the sense of
Xg_x+Uya_Y+VX aX +§ X Loy Eq. (15). Since conservation laws play a major role in our
discussion of wakes in Secs. IV and V and are also of crucial

IQ  9?V, importance in the study of turbulent jdt8], having an equa-
= a_x+ gy2 ' (118 tion yielding the conservation of momentum is essential.
Another interesting feature of E¢L43g is that the coeffi-

U, JQ cient in front of viscous term is unity, and remains the sole

(11  unknown parameter in the equation. Therefore, the velocity
profiles can be fitted using one parameter only, Ancan be
found later by using the experimental data for the width of
the flow, as is illustrated at the end of Sec. IV. We also note
that the boundary-layer scaling in R¢fl] was done forA

=y and therefore does not yield correct the thickness of the
turbulent boundary layer.

NN

Aterm due to the spatial variation ef like that appearing in

Eqg. (118 does not appear in Ed11b since we have as-
sumeda=«a(X) only. Finally, the streamwise momentum
density V, that appears in systeiil) is, according to Eq.

(9¢), precisely

IV. PLANAR WAKES
Vy=U,—

: 12

2
a( 5 Zaux)+a20 U,

ax | €Y Tax aY?

For application to planar wakes, we adopt the following
eaimplified notation for variables in the generalized Praadlt
nsystem(14). Mean velocities (,,U,)=(u,v), Helmholt-

zian velocities V,,V,)=(u;,v;), Cartesian coordinates
(X,Y)=(x,y), andU_=1 is the uniform stream far above,
U\ ? below and upstream of the symmetric planar body forming
Y ) (13 the wake. In lieu of the streamwise velocitywe work with
the deficit velocityw=1—u which, for asymptotic far-field

Substitution of this expression into E@l1la yields the wakes, is small as compared to the freestream velocity. Thus,
Prandtle system, the dependent variables used for analyzing both the planar
classical wake in Sec. IV A and the planar dragless wake in

showing that the first term in the brackets may be neglect

compared to the second in the boundary-layer formulatio

Taking this into account, integration of E(L1b) onY gives
a2

1 2
QUX,Y)=P(X)~ 5 U+ =

IVy IVy U, U, dU, dU, Sec. IV B are the wake deficit velocity
Uy—y +Uy— +a? ————
X aY IXIY Y  gy2 oX
w=1-u (163
da?[dU\2  dP 9%V,
axX \ oY dxX = gy2 and the Helmholtzian wake deficit velocity
Uy, dU, Wi =W— aW,,, (16b)
X + A 0, (14b
in which = a(x).
Vy=U,— a? Uy (140
=U,~«a . C
oo Y? A. The classical wake

Inserting Eqs.(16) into the generalized Prand#ét equa-

We emphasize that our version of the Prandtequations . ! . . P .
phastz ur vers! quat qt|ons (14) and linearizing yields the diffusion equation

conserves momentum in the following sense. Integrating E
(149 across a fluid domaifY,,Y,] yields 5
oW, JPw,

—= . 7
Yo (15) IX 5y2

d f U,V dy=
ﬁ xVx - W y
1
Positing the similarity ansatz
SincefU,V, dY is the total streamwise momentum flux, dis-
sipation of momentum enters only through boundavy {
finite) or far-field (Y, ,—) effects; there are no bulk terms wi(X,y) =XF(7),

responsible for the change. The conservation of momentum
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from Eq. (17), we find thatb=1/2 so that the width of the 1.0
wake grows proportionally ta/x, which is consistent with
experiments. That, in turn, gives the ordinary differential
equation 084
4 l !
F'=aF—57F'. (18) 06+
f(n)
To determine the constamt, we need to use the physical 04
condition that momentum deficit in the wake is equal to the
drag on the body responsible for the wake, viz.,
0.2 4
DEJ wldy=xa+1/2f F(n)dy. (19
o o 0.0 T T T T

Therefore, we hava= —1/2, and the deficit of wake veloc- 00 03 10 15 20 25 30
ity on the centerline is decreasing ®s*? which is again n

consistent with experimental dafé]. Inserting this value
into Eqg. (18) and integrating twice gives Goldstein8] so-
lution

FIG. 1. Least-squares fisolid line) of Eq. (23) to the recent
measurements of Wygnanséi al. [9], for which A =3.059. Both
the data of Wygnansieét al. (full circles) and the data of Townsend
[10] (open circleg are displayed. Also shown is the standard

a4
F(m=Ce 77, (20 mixing-length theory resulfdashed lingreported in Ref[6].

satisfying zero value and derivative as—*+ and zero
slope atp=0. The integral constraintl9) then determines Townsend[10] and the standard predictidi n):e*O-G%zz
the constan€=D/2\/7. Forw anda(x), we posit the com-  from mixing-length theonf6]. The pesent theoretical result
patible similarity forms is close to that of mixing-length theory: however, while our
2 prediction(23) does a slightly better job describing the tails
' of both experimental datasets, mixing-length theory gives a
slightly better fit to the inner portion of the measurement of
Wygnanskiet al.
7 —\2f=e 74 (21) The numerical value oA can be extrapolated using ex-
perimental data for growth of the wake’s thickness. Let us
where)\2=1/ag. This has the even homogeneous solution denote §(x) the transverse distance from the symmetry
plane, where velocity deficit achieves the value of half of the
fe(77)=Acoshh maximum velocity deficit in the center. Since we know from
experiment thats(x) grows proportionally toyX, we can
deduce the width of the wake in the dimensional coordinates
n+ 2)\) ‘“’erf( 77_2)\” from the experiment a8(x) = \I.x, wherel has the dimen-

W(x,y)=Cx (), a(x)=aox"

Then Eq.(16b) provides the equation fdi( ), namely,

and the particular solution

AN
fo(m)= —\/—exz el erf

2 sion of length. Our theoretical prediction give§(x)

22) = n12yAX/IU,, whereU,, is the velocity of undisturbed
flow far away from the wake, andyy, is defined by
Satisfaction off(+%)—0 on the general solutiofi=f,  f(7,,)=1/2. From Fig. 1, we observe that;,~1, so A
+f, gives =1,U.., and the ratio ofA to the kinematic viscosity is
2 justl U, /v, i.e., the Reynolds number based on the length
A= \mret scalel,. This allows for a numerical estimate of the ratio
Alv. For example, Townsend's datql0] vyield I,
=0.0015 cm, velocity of the air flowJ,=1120 cm/sec.
Since the kinematic viscosity of air is=0.15 cnf/sec, we
conclude thatA/v=9.

Thus, the exact solution to the Prandtlequations for the
mean deficit velocity in a classical turbulent wake is

el

cosh\ n— [Terf

- e_Merf 7”2
2 2 '

n+2\

f()=Jme*’ 5

B. The dragless wake

(23

For self-propelled bodie® =0, and consequently Eg.
(19) no longer provides a condition for determining the scal-
A least-squares fit to the most recent and complete data dafig exponenta. Another conservation law must be derived
Wygnanskiet al.[9] yields\ = 3.059. These results are com- for the case of a dragless wake. In pursuit of this, @) is
pared in Fig. 1 which also displays the earlier data ofmultiplied byy? and integrated across the wake to obtain
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1.0+

J’ yzwlxdy:J’ leydy-
- - 0.8
Two integrations by parts, using the zero velocity and slope 06_'
far-field boundary conditions, give ’
- 0.4 1
3= f y2w, dy, (29 f) |
e 0.2 3D
showing that the second moment of deficit velocity is con- 00 ‘
served. This integral invariant for momentumless laminar | — N —
planar wakes is knowfl1]. 024 2D
Inserting the similarity solution form
$4+r———T—TrTTT T TT T T
y -5 -4 -3 -2 -1 0 1 2 3 4 5
w1(X,y)=x2F(7%), == 25
1) =XF(n), 7= (25 ,

FIG. 2. Self-similar mean turbulent streamwise velocity deficit

into integral constraint24) yields profiles for both planar(2D) and axisymmetric(3D) dragless

. wakes.
— a+3/2 2
J,=8X f_mn F(»n)dn. (26) U U U,
+—+ =

Therefore, the conservation of the second moment is possible o ' 7z
if a=—3/2. Thus, the velocity deficit on the center line of a
two-dimensional (2D) momentumless wake attenuates as A. The classical wake
x %2, which is considerably more rapid than tke*? decay For an axisymmetric wake behind a body of diagthe

of the classical wake. As before, we takéx) = aox¥% The  momentum deficit carried by the wake is given by
complete solution of this problem is given in the Appendix,

; P 302 o
Sec. 1. The velocity deficit is/(x,y) =x"“f(%), where D=21-rJ' rwy(z,r)dr, 29)
0
N4 4 5 .,
f(n)= 2 2 cosh\ 7— ﬂe 7 where (,z) are cylindrical polar coordinates. Assume a self-
™ similar deficit velocity of the formw;=2z%F(%) with 7
N N ~rz~P. The axisymmetric analogs of Eq4.7) and(16b) are
—eMerfl s+ n|—e Merf ——77) , (27
2 2 owy  d*wy 1w, -
_ _ 9z g2 r or’ (293
in which \ =2/«
The velocity deficit profile computed from E7) is the )
curve labeled 2D in Fig. 2. We have not been able to locate Wi =W— a2 ‘9_W+E a_W _ (29b)
experimental data for planar dragless wakes with which to ! or2 roor

compare our theoretical results.

Inserting the similarity solution forms into E429a9 gives

b=1/2 and from Eq(28) it follows thata=—1. Thus, the

width of the wake is growing proportional @'? and center
Here the flow of streamwise velocity..=1 aligned with  line velocity deficit decreases as®, which is again consis-

the axis of a body of revolution giving rise to an axisymmet-tent with experiment$6].

ric wake is considered. The analysis follows closely that for For the choicea(z)=aqz"? the solution for the wake

the axisymmetric classical and dragless wakes in Sec. lll, seelocity deficit functionf(#) is derived in the Appendix,

we simply outline the results in a cogent fashion. It may beSec. 2. The result is

observed that a derivation of the governing equations for 5

axisymmetric boundary-layer flow follows closely that for _ 2 o, 42

planar flow. The fundamental difference lies in the leading fm)= ?{IO()‘”)(CW‘ /4)_J’0 MtKo(At)e dt)

order diffusion operators that appear in E@sta and(140):

whereas in the planar case, the diffusion operatefigy?,

in the axisymmetric case it i&%/dr%+ 1/r 9/ or, where ¢,2z)

are cylindrical coordinates. The incompressibility condition

(14b) is changed to where

V. AXISYMMETRIC WAKES

+Ko(A7) fonvtlo(m)e—tzdt}, (30)
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1.0

dt

f(ﬁ):|o()\7l)[C1()\2/4)_)\zfntKo()\t)e

0

0.8 ”

+Ko(A n)xzf t(t2—1l,(\e ¥dt, (33
0

0.6 -

f(n) where\ = 2/a, and

0.4 -

Cy(s) =4sf (2= 1)Ko(Ax)e ¥ dt= — s+ s2e°Ei( —s).
0

0.2 4

Solution (33) is the curve labeled 3D in Fig. 2. Unfortu-
nately, experimental data for the dragless waka] were
taken too close to the body for the self-similar regime to

2.0 .
have developed, so we cannot compare those results with our
n asymptotic solution.
FIG. 3. Least-squares fitn(E3.35) of the axisymmetric wake

velocity deficit profile given in Eq(30) (solid line) to the experi- V1. DISCUSSION AND CONCLUSION

mental datgsolid circles of Uberoy and Freymuth12]. The stan-

dard mixing-length theory predictid8] is also showr(dashed ling We have derived a modified form of Navier-Stokes

for comparison. model for the case wheun is spatially dependent. It is ar-
gued that the coefficient of the dissipation term does not

Cy(s)= —s€EEi(—s). have to be equal to the kinematic viscosity as previous works

have suggested. We have also derived the corrected form of
Prandtle equations which now yield conservation of stream-
wise momentum. Based on these equations, four different

_ o —t . H H _ . . . .
PVI—Z(.e /t)dt is the expon_ennal integral. A least analytical solutions describing turbulent wakes using the
squares fit of EQ(30) to the experimental results of Uberoy Navier-Stokesae model of mean turbulent flow have been

and Freymutt{12] yields A =3.35 and this comparison be- ¢4 The predictions of the model agree well with avail-
tween theory and experiment is displayed in Fig. 3. Alsogpie exneriments for classical wakes, though the difference
included is the predictionf(7)=e ""@7 from mixing-  between mixing-length theory and the present results for the
length theory{6]. planar wake may be considered insignificant. Our method
also paves the way for an explicit estimation of the dissipa-

B. The dragless wake tion coefficient from experimental data. The strength of

) ) Navier-Stokesy model lies in the fact that self-similar solu-

For the axisymmetric dragless wake, the net wake MO and exponents agreeing with experimental data appear
mentum is zero so Eq28) does not apply. In this case, the g ;omatically without the need of extra assumptions. The
integral constraint is found by multiplying the governing yeqing of Navier-Stokes: equations in the boundary-layer
equation(29a by r® and integrating across the wake t0 0b- it has the extra advantage that any ambiguity in the
tain choice of the dissipation coefficient is removed by the

(75 scaling. The result is that only a one-parameter fit to experi-
Ja= fo rwydr, D mental data is required.

The variablea(x) was chosen to be proportional to the
width of the boundary layer to assure self-similarity. This is
the only physically feasible choice since is the rms of
~rz " into Egs.(29a and (31) to find similarity exponents Lagrangian fluctuations (_)f the particle position. In a turbu-
b=1/2 andaz—lz The relevant solution foF(7) is now lent boundary layer, fluid particles can move across the

B ) T , boundary layer, so the fluctuation amplitude at a given point
F(n)=C(n°—1)e" 7, V\ir;/e;re, from Eq.(31), we find C 5 approximately equal to thickness of boundary layer at this
=Js/a. Now for w=Cz **f(#) and using the convenient ,sint and the rms of fluctuations are thus of the order of

Here, D is the drag on the body\ =2/aq, and Ei@)=

showing that the third moment of the wake deficit velocity is
conserved 11]. Now insert the ansatw,;=2z?F(%) and 7%

choice n=r/\/4z, Eq.(29b) gives boundary-layer thickness as well.
1 The two features of Navier-Stokesmodel (A>v anda
74 Zf —\2f=— (52— 1)e" 7 (32)  being of the same order as boundary-layer thicknelesrly
Uj invoke analogy with the standard mixing-length theory of

turbulence. Numerically, these two completely different ap-
As in the preceding sectiomy(z) = ayz2. The solution for proaches yield similar results. Since the derivation of the
the axisymmetric dragless wake is, to within a constant mulEuler « equation is rigorous, the main weakness of the
tiplier, Navier Stokesr model lies in complete lack of theory for the
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dissipation term, and a rigorous derivation of this term would

be of paramount importance.
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APPENDIX: SOME DETAILS OF SOLUTIONS
1. Dragless wakes in two dimensions
Inserting Eq.(25) into Eq.(17) gives the boundary-value
problem

F'+27F'+6F=0; F'(0)=0, F(x)=0,

with solution

F(7)=Ce "Hy(n), (A1)

where the second Hermite polynomial kk,(7)=47°—2.
The constanC determined from Eq(24) is C=J,/16\/.
Compatible forms fomw(x,y) and «(x) are

w(x,y)=Cx (), a(x)=ayx*?

which, when inserted into Eq16b), yields

f'—\2f=(4n?-2)e 7, (A2)

where\?=4/a. The solution of Eq(A2) satisfying the van-
ishing boundary conditions at infinity is EQR7).

2. Axisymmetric wakes with drag

A convenient choice for the similarity variable ig
=2r/\z and insertingw,;=z"'F(7) into Eq. (293 yields
the boundary-value problem

1 2
f”+;f’—)\2f=ef’7. (A3)

The homogenous solutions arg(A ) andKy(A\ 7). A par-
ticular solutionf ,(7) obtained by variation of parameters is

fo(m)=—1Io(A W)AZJO”tKo()\t)eftzdt

+Ko(N n)xzf:u e Pdt. (A4

Thus, the general solution i ) =C1lo(A 7) + CoKo(N 7)
+f,(7n), whereC, and C, are determined from boundary
conditions. AlthoughKy(\ %) in Eq. (A4) is singular asyp
—0, the integral multiplying it is of order? so the entire
term remains regular. Therefore, the singuldsKq(\ 7)
component of the homogeneous solution is necessarily zero,
i.e.,,C,=0.

In the limit »—o0, the term multiplyinglo(\ %) in Eq.
(A4) becomes

)\Zf:tKo()\t)e’tz dt=—seEi(—s)=Cy(s), (A5)

wheres=\?/4. This leads to the formulég0).
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