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Turbulent wake solutions of the Prandtl a equations
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A derivation of the Navier-Stokesa equations for spatially dependenta is presented. It is shown that an
extra term in the equation is necessary to ensure the conservation of momentum. The Prandtl form of these
variablea equations are determined for both planar and axisymmetric pressure-gradient-driven boundary-layer
flows correcting previous work on the subject. The Prandtl equations are then solved analytically for four
different asymptotic wake flows: the classical planar wake, the classical axisymmetric wake, the planar drag-
less wake, and the axisymmetric dragless wake. Least-squares fits of the theoretical solutions with available
turbulent mean-flow velocity data for classical planar and axisymmetric wakes are given. We point out that the
dissipation coefficient does not have to be equal to the kinematic viscosity, and its numerical value may be
estimated from experimental data.
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I. INTRODUCTION

The Lagrangian averaged Navier-Stokesa (NS-a) equa-
tions were recently proposed@1# as a model for average
velocity fields in turbulent flow. These equations have
following form: if u(x,t) is the averagedvelocity of the
turbulent flow, anda is a constant representating the rm
~root mean square! of Lagrangian fluctuations, thenu(x,t)
satisfies

]v

]t
1~u•“ !v1v j“uj1“Q5LDv, ~1a!

“•u50, ~1b!

v5u2a2Du, ~1c!

whereL plays the role of viscosity and Eq.~1c! connects
momentumv and velocityu through the Helmholtz operato
In previous work on the subject, the constantL was taken to
be equal to the kinematic viscosity of the fluidn so that Eq.
~1! reduces to the Navier-Stokes equation asa→0. This
formulation is mathematically interesting, since the existe
and uniqueness of solutions have been established for Eq~1!
in three dimensions@2,3#, whereas the same results for th
Navier-Stokes equations are missing. From the pract
point of view, system~1! permits modeling of turbulent flows
whose best fit is determined by the choice ofa. The deriva-
tion of the Eulera equations@i.e., system~1! with L50] is
rigorous, but the introduction of the viscous term on t
right-hand side of Eq.~1a! is ad hoc. In particular, we be-
lieve that the constantL in front of the dissipation term doe
not have to be equal to kinematic viscosity, as the limit
a→0 is not physical. Indeed,a→0 corresponds to the flow
becoming laminar, sincea is the rms of Lagrangian fluctua
tion of the trajectory. The coefficientsL anda therefore are
dependent on the flow parameters~in particular, on the suit-
ably defined Reynolds number! and must be fitted to experi
1063-651X/2003/67~3!/036304~7!/$20.00 67 0363
e

e

al

f

mental data. We also note that even though authors in
@1# achieved excellent fit to experimental data in chann
and pipes forL5n, the analytical expression for their fittin
curves will remain the same in the case whenL is arbitrary,
since for pipe and channel flows the solutions of Eq.~1! are
given by Dv5const. Therefore, an ongoing effort is und
way to derive a variety of test cases using this model
comparison with available experimental data. Turbule
boundary-layer flows are ideal for this task, since in t
equations for these flows~Prandtla equations, see below!,
we can scale out the value ofL and fit the shape of velocity
profile using only one parameter~a rescaleda). The dissi-
pation coefficientL affects only the thickness of the flow
and can be deduced from experimental data independe
Hence, only a one-parameter fit to experimental data is
quired.

In the current study, we determine the asymptotic form
mean turbulent wake profiles described by the Prandtl li
of the NS-a equations in both two and three dimension
with equal consideration given to classical wakes and to m
mentumless wakes behind self-propelled bodies.

In Sec. II, a derivation of the generalized NS-a equations,
valid for spatially varyinga, is outlined. In Sec. III, the
thin-layer approximation to the generalized NS-a equations,
herein referred to as the Prandtla equations, is developed fo
both planar and axisymmetric boundary-layer flows. W
the exception of stagnation-point flows and a couple of ot
simple flow configurations, the cross-stream thickness o
turbulent boundary layer varies~increases! with the stream-
wise direction, taken here to bex, in which case it is entirely
probable thata will vary with x.

Recently, a form of the Prandtla boundary-layer equa
tions was reported by Cheskidov@4#. Unfortunately, we have
found Cheskidov’s equations to be incorrect owing to th
failure to conserve streamwise momentum flux. Indeed
was this inconsistency that motivated our reconsideration
the results in Ref.@1# to seek a more general form of th
NS-a equations valid for streamwise varyinga. We discuss
the physical and mathematical differences between our
©2003 The American Physical Society04-1
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V. PUTKARADZE AND P. WEIDMAN PHYSICAL REVIEW E 67, 036304 ~2003!
Cheskidov’s version of the Prandtla equations at the end o
Sec. III.

Application of the generalized NS-a equations to mean
turbulent wake flows, both classical and momentum-free,
presented in Secs. IV and V. To leading order, the spa
dependence ofa does not enter into the analysis because
weak velocity defect in the far wake permits a linearizati
of the advection terms. However, further corrections to
asymptotic solutions would include a contribution from t
variability of a.

II. THE NAVIER-STOKES a EQUATIONS
FOR VARIABLE a

For clarity, we begin our formulation of the generalize
NS-a equations for variablea with a brief derivation of the
Eulera equations obtained through application of variation
methods as given in Ref.@1#. Lagrangian coordinatesX(a,t)
denote the position of a fluid particle at timet originating at
point a. The kinetic energy is given by*d3aẊ2. Fluid in-
compressibility is enforced by the requirement

D[detS ]X

]aD51. ~2!

Introduction of a Lagrange multiplierq to account for Eq.~2!
leads to the energy functional

L5E d3aF Ẋ21qH 12detS ]X

]aD J G . ~3!

Taking the variation ofL with respect toX and using the
relation ln(detM)5tr(ln M) for square matrixM, we ar-
rive at the Euler equations in Lagrangian coordinates

Ẍ2“q50. ~4!

In Eulerian coordinates,Ẋ5û and Ẍ5ût1(û•“)û, Eq. ~4!
reduces to the familiar form of Euler equations in Euleri
coordinates, in whichq plays the role of the thermodynam
pressure. Hereû is the instantaneous particle velocity, not
be confused withu which is the averaged turbulent flow
velocity.

Let us now consider a more general Lagrangian wh
depends on the spatial coordinates

L5E d3aFF~Ẋ,X!1qH 12detS ]X

]aD J G . ~5!

HereF is an arbitrary function ofX and Ẋ and in this case,
the Euler equations are

d

dt

]F

]Ẋ
2

]F

]X
2“q50. ~6!

Now in Eulerian coordinates, the variational equation for
velocity u5Ẋ is
03630
re
al
e

e

l

h

e

S ]

]t
1u•“ D 1

D

dL
du

1
1

D

dL
duj

“uj1
1

D

]F

]X
2“

dL
dD

50. ~7!

The Euler-Poincare´ equations are identical to those obtain
by Chenet al. @1# but with the additional term 1/D]F/]X
arising from the explicit spatial dependence of the Lagra
ian. For analysis of average velocities in turbulent flows,
employ the Lagrangian introduced in Ref.@1#, viz.,

L5E d3XH D

2
@ uuu21a2u“uu2#1q@^det~ I 1jX!&2D#

1~^j det~ I 1jX!&•“ !qJ , ~8!

whereD is given by Eq.~2!, q is the Lagrange multiplier for
the incompressibility conditionD2150, j is the fluctuation
of Lagrangian position, and̂•••& is the ensemble average o
fluctuations. As usual, it is assumed that^j ij j&5d i j a

2. Tak-
ing the variation of the averaged Lagrangian~8! furnishes the
generalized Eulera equations

S ]

]t
1u•“ D v1v j“uj1

1

2
~“a2!u“uu21“Q50, ~9a!

“•u50, ~9b!

v5u2“•~a2
“u!. ~9c!

Performing the spatial integration shows that Eq.~9a! indeed
conserves momentum flux. More detailed derivation of E
~9a! is given in Ref.@5#. The final step is to add the momen
tum diffusion term to the right-hand side of Eq.~9a! to obtain
the generalized NS-a equations

S ]

]t
1u•“ D v1v j“uj1

1

2
~“a2!u“uu21“Q5LDv

~10!

valid for spatially dependenta. Equations~9b! and ~9c! are
unchanged.

III. THE TWO-DIMENSIONAL PRANDTL a EQUATIONS

The Prandtl limit of the generalized NS-a equations in
two dimensions are now obtained. As usual, we choose (x,y)
as streamwise and cross-stream coordinates, respect
with corresponding velocities (ux ,uy). If the typical length
scale isL* and the typical velocity isU* , the standard
boundary-layer scalingsx5L* X, y5eL* Y, ux5U* Ux ,
anduy5eUy , wheree!1 is the boundary-layer slenderne
parmeter. Assuminga5a(x) only, the scaling a(x)
→eL* a(X) is employed; note that lower casea is retained
as thescaledvariable for notational simplicity. Balancing th
leading-order viscous term with the leading-order iner
terms in the x component of Eq. ~9a! yields e
5AL/(L* U* ). Thus, the thickness of boundary layer is pr
portional toRL

21/2, whereRL is the Reynolds number base
on L. For laminar boundary layer,d is proportional to
4-2
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Rn
21/2, whereRn5LU* /n. This clearly shows that the ef

fective viscosityL cannot be equal to the kinematic viscos
n, since experiments@6# show that for turbulent boundar
layers,e@Rn

21/2. Now with all scales fixed, the streamwis
and cross-stream components of Eq.~9a! are, respectively,

Ux

]Vx

]X
1Uy

]Vx

]Y
1Vx

]Ux

]X
1

1

2

]a2

]X S ]Ux

]Y D 2

52
]Q

]X
1

]2Vx

]Y2
, ~11a!

Vx

]Ux

]Y
52

]Q

]Y
. ~11b!

A term due to the spatial variation ofa like that appearing in
Eq. ~11a! does not appear in Eq.~11b! since we have as
sumeda5a(X) only. Finally, the streamwise momentu
densityVx that appears in system~11! is, according to Eq.
~9c!, precisely

Vx5Ux2F ]

]X S e2a2
]Ux

]X D1a2
]2Ux

]Y2 G , ~12!

showing that the first term in the brackets may be neglec
compared to the second in the boundary-layer formulat
Taking this into account, integration of Eq.~11b! on Y gives

Q~X,Y!5P~X!2
1

2
Ux

21
a2

2 S ]Ux

]Y D 2

. ~13!

Substitution of this expression into Eq.~11a! yields the
Prandtla system,

Ux

]Vx

]X
1Uy

]Vx

]Y
1a2S ]Ux

]X ]Y

]Ux

]Y
2

]Ux

]Y2

]Ux

]X D
1

]a2

]X S ]Ux

]Y D 2

52
dP

dX
1

]2Vx

]Y2
, ~14a!

]Ux

]X
1

]Uy

]Y
50, ~14b!

Vx5Ux2a2
]2Ux

]Y2
. ~14c!

We emphasize that our version of the Prandtla equations
conserves momentum in the following sense. Integrating
~14a! across a fluid domain@Y1 ,Y2# yields

d

dXE UxVx dY5
]Vx

]y U
Y1

Y2

. ~15!

Since*UxVx dY is the total streamwise momentum flux, di
sipation of momentum enters only through boundary (Y1,2
finite! or far-field (Y1,2→`) effects; there are no bulk term
responsible for the change. The conservation of momen
03630
d
n.

q.

m

flux is afforded by the coefficient in front of the last term o
the left-hand side of Eq.~14a! being equal to 1, and not 1/2
as would be obtained from a straightforward application
boundary-layer scaling to the NS-a equations for constanta,
as was done by Cheskidov@4# in the context of Blasius flow
along a flat plate. Cheskidov’s version of the Prandtla equa-
tions fails to conserve streamwise momentum in the sens
Eq. ~15!. Since conservation laws play a major role in o
discussion of wakes in Secs. IV and V and are also of cru
importance in the study of turbulent jets@7#, having an equa-
tion yielding the conservation of momentum is essential.

Another interesting feature of Eq.~14a! is that the coeffi-
cient in front of viscous term is unity, anda remains the sole
unknown parameter in the equation. Therefore, the velo
profiles can be fitted using one parameter only, andL can be
found later by using the experimental data for the width
the flow, as is illustrated at the end of Sec. IV. We also n
that the boundary-layer scaling in Ref.@4# was done forL
5n and therefore does not yield correct the thickness of
turbulent boundary layer.

IV. PLANAR WAKES

For application to planar wakes, we adopt the followi
simplified notation for variables in the generalized Prandla
system~14!. Mean velocities (Ux ,Uy)⇒(u,v), Helmholt-
zian velocities (Vx ,Vy)⇒(u1 ,v1), Cartesian coordinate
(X,Y)⇒(x,y), andU`51 is the uniform stream far above
below and upstream of the symmetric planar body form
the wake. In lieu of the streamwise velocityu, we work with
the deficit velocityw512u which, for asymptotic far-field
wakes, is small as compared to the freestream velocity. T
the dependent variables used for analyzing both the pla
classical wake in Sec. IV A and the planar dragless wake
Sec. IV B are the wake deficit velocity

w512u ~16a!

and the Helmholtzian wake deficit velocity

w15w2a2wyy , ~16b!

in which a5a(x).

A. The classical wake

Inserting Eqs.~16! into the generalized Prandtla equa-
tions ~14! and linearizing yields the diffusion equation

]w1

]x
5

]2w1

]y2
. ~17!

Positing the similarity ansatz

w1~x,y!5xaF~h!, h5
y

xb
4-3
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from Eq. ~17!, we find thatb51/2 so that the width of the
wake grows proportionally toAx, which is consistent with
experiments. That, in turn, gives the ordinary different
equation

F95aF2
1

2
hF8. ~18!

To determine the constanta, we need to use the physica
condition that momentum deficit in the wake is equal to
drag on the body responsible for the wake, viz.,

D[E
2`

`

w1 dy5xa11/2E
2`

`

F~h!dh. ~19!

Therefore, we havea521/2, and the deficit of wake veloc
ity on the centerline is decreasing asx21/2, which is again
consistent with experimental data@6#. Inserting this value
into Eq. ~18! and integrating twice gives Goldstein’s@8# so-
lution

F~h!5Ce2h2/4, ~20!

satisfying zero value and derivative ash→6` and zero
slope ath50. The integral constraint~19! then determines
the constantC5D/2Ap. For w anda(x), we posit the com-
patible similarity forms

w~x,y!5Cx21/2f ~h!, a~x!5a0x1/2.

Then Eq.~16b! provides the equation forf (h), namely,

f 92l2f 5e2h2/4, ~21!

wherel251/a0
2. This has the even homogeneous solutio

f e~h!5A coshlh

and the particular solution

f p~h!5
lAp

2
el2Felh erfS h12l

2 D2e2lh erfS h22l

2 D G .
~22!

Satisfaction of f (6`)→0 on the general solutionf 5 f e
1 f p gives

A5Aplel2
.

Thus, the exact solution to the Prandtla equations for the
mean deficit velocity in a classical turbulent wake is

f ~h!5Aplel2Fcoshlh2H elh

2
erfS h12l

2 D
2

e2lh

2
erfS h22l

2 D J G . ~23!

A least-squares fit to the most recent and complete dat
Wygnanskiet al. @9# yieldsl53.059. These results are com
pared in Fig. 1 which also displays the earlier data
03630
l

e
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Townsend@10# and the standard predictionf (h)5e20.693h2

from mixing-length theory@6#. The pesent theoretical resu
is close to that of mixing-length theory: however, while o
prediction~23! does a slightly better job describing the ta
of both experimental datasets, mixing-length theory give
slightly better fit to the inner portion of the measurement
Wygnanskiet al.

The numerical value ofL can be extrapolated using ex
perimental data for growth of the wake’s thickness. Let
denote d(x) the transverse distance from the symme
plane, where velocity deficit achieves the value of half of t
maximum velocity deficit in the center. Since we know fro
experiment thatd(x) grows proportionally toAx, we can
deduce the width of the wake in the dimensional coordina
from the experiment asd(x)5Al ex, wherel e has the dimen-
sion of length. Our theoretical prediction givesd(x)
5h1/2ALx/U`, where U` is the velocity of undisturbed
flow far away from the wake, andh1/2 is defined by
f (h1/2)51/2. From Fig. 1, we observe thath1/2.1, so L
5 l eU` , and the ratio ofL to the kinematic viscosityn is
just l eU` /n, i.e., the Reynolds number based on the len
scale l e . This allows for a numerical estimate of the rat
L/n. For example, Townsend’s data@10# yield l e
.0.0015 cm, velocity of the air flowU`51120 cm/sec.
Since the kinematic viscosity of air isn.0.15 cm2/sec, we
conclude thatL/n.9.

B. The dragless wake

For self-propelled bodiesD50, and consequently Eq
~19! no longer provides a condition for determining the sc
ing exponenta. Another conservation law must be derive
for the case of a dragless wake. In pursuit of this, Eq.~17! is
multiplied by y2 and integrated across the wake to obtain

FIG. 1. Least-squares fit~solid line! of Eq. ~23! to the recent
measurements of Wygnanskiet al. @9#, for which l53.059. Both
the data of Wygnanskiet al. ~full circles! and the data of Townsend
@10# ~open circles! are displayed. Also shown is the standa
mixing-length theory result~dashed line! reported in Ref.@6#.
4-4
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E
2`

`

y2w1x dy5E
2`

`

w1yy dy.

Two integrations by parts, using the zero velocity and slo
far-field boundary conditions, give

J25E
2`

`

y2w1 dy, ~24!

showing that the second moment of deficit velocity is co
served. This integral invariant for momentumless lamin
planar wakes is known@11#.

Inserting the similarity solution form

w1~x,y!5xaF~h!, h5
y

A4x
~25!

into integral constraint~24! yields

J258 xa13/2E
2`

`

h2F~h!dh. ~26!

Therefore, the conservation of the second moment is poss
if a523/2. Thus, the velocity deficit on the center line of
two-dimensional~2D! momentumless wake attenuates
x23/2, which is considerably more rapid than thex21/2 decay
of the classical wake. As before, we takea(x)5a0x1/2. The
complete solution of this problem is given in the Append
Sec. 1. The velocity deficit isw(x,y)5x23/2f (h), where

f ~h!5
el2/4

4 F2 coshlh2
4

Apl
e2h22l2/4

2elh erfS l

2
1h D2e2lh erfS l

2
2h D G , ~27!

in which l52/a0.
The velocity deficit profile computed from Eq.~27! is the

curve labeled 2D in Fig. 2. We have not been able to loc
experimental data for planar dragless wakes with which
compare our theoretical results.

V. AXISYMMETRIC WAKES

Here the flow of streamwise velocityU`51 aligned with
the axis of a body of revolution giving rise to an axisymm
ric wake is considered. The analysis follows closely that
the axisymmetric classical and dragless wakes in Sec. III
we simply outline the results in a cogent fashion. It may
observed that a derivation of the governing equations
axisymmetric boundary-layer flow follows closely that f
planar flow. The fundamental difference lies in the lead
order diffusion operators that appear in Eqs.~14a! and~14c!:
whereas in the planar case, the diffusion operator is]2/]y2,
in the axisymmetric case it is]2/]r 211/r ]/]r , where (r ,z)
are cylindrical coordinates. The incompressibility conditi
~14b! is changed to
03630
e
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]Ur

]r
1

Ur

r
1

]Uz

]z
50.

A. The classical wake

For an axisymmetric wake behind a body of dragD, the
momentum deficit carried by the wake is given by

D52pE
0

`

rw1~z,r !dr, ~28!

where (r ,z) are cylindrical polar coordinates. Assume a se
similar deficit velocity of the formw15zaF(h) with h
;rz2b. The axisymmetric analogs of Eqs.~17! and~16b! are

]w1

]z
5

]2w1

]r 2
1

1

r

]w1

]r
, ~29a!

w15w2a2S ]2w

]r 2
1

1

r

]w

]r D . ~29b!

Inserting the similarity solution forms into Eq.~29a! gives
b51/2 and from Eq.~28! it follows that a521. Thus, the
width of the wake is growing proportional toz1/2 and center
line velocity deficit decreases asz21, which is again consis-
tent with experiments@6#.

For the choicea(z)5a0z1/2, the solution for the wake
velocity deficit function f (h) is derived in the Appendix,
Sec. 2. The result is

f ~h!5
D

p F I 0~lh!S C1~l2/4!2E
0

h
l2tK0~lt !e2t2 dtD

1K0~lh!E
0

h
l2tI 0~lt !e2t2 dtG , ~30!

where

FIG. 2. Self-similar mean turbulent streamwise velocity defi
profiles for both planar~2D! and axisymmetric~3D! dragless
wakes.
4-5
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C1~s!52sesEi~2s!.

Here, D is the drag on the body,l52/a0, and Ei(z)5
2PV*2z

` (e2t/t)dt is the exponential integral. A leas
squares fit of Eq.~30! to the experimental results of Ubero
and Freymuth@12# yields l53.35 and this comparison be
tween theory and experiment is displayed in Fig. 3. A
included is the predictionf (h)5e2 ln(2)h2

from mixing-
length theory@6#.

B. The dragless wake

For the axisymmetric dragless wake, the net wake m
mentum is zero so Eq.~28! does not apply. In this case, th
integral constraint is found by multiplying the governin
equation~29a! by r 3 and integrating across the wake to o
tain

J35E
0

`

r 3w1 dr , ~31!

showing that the third moment of the wake deficit velocity
conserved@11#. Now insert the ansatzw15zaF(h) and h
;rz2b into Eqs.~29a! and ~31! to find similarity exponents
b51/2 anda522. The relevant solution forF(h) is now
F(h)5C(h221)e2h2

, where, from Eq.~31!, we find C
5J3 /p. Now for w5Cz23/2f (h) and using the convenien
choiceh5r /A4z, Eq. ~29b! gives

f 91
1

h
f 82l2f 52~h221!e2h2

. ~32!

As in the preceding section,a(z)5a0z1/2. The solution for
the axisymmetric dragless wake is, to within a constant m
tiplier,

FIG. 3. Least-squares fit (l53.35) of the axisymmetric wake
velocity deficit profile given in Eq.~30! ~solid line! to the experi-
mental data~solid circles! of Uberoy and Freymuth@12#. The stan-
dard mixing-length theory prediction@6# is also shown~dashed line!
for comparison.
03630
-

l-

f ~h!5I 0~lh!FC1~l2/4!2l2E
0

h
tK0~lt !e2t2 dtG

1K0~lh!l2E
0

h
t~ t221!I 0~lt !e2t2 dt, ~33!

wherel52/a0 and

C1~s!54sE
0

`

t~ t221!K0~lx!e2t2 dt52s1s2esEi~2s!.

Solution ~33! is the curve labeled 3D in Fig. 2. Unfortu
nately, experimental data for the dragless wake@13# were
taken too close to the body for the self-similar regime
have developed, so we cannot compare those results with
asymptotic solution.

VI. DISCUSSION AND CONCLUSION

We have derived a modified form of Navier-Stokesa
model for the case whena is spatially dependent. It is ar
gued that the coefficient of the dissipation term does
have to be equal to the kinematic viscosity as previous wo
have suggested. We have also derived the corrected form
Prandtla equations which now yield conservation of strea
wise momentum. Based on these equations, four diffe
analytical solutions describing turbulent wakes using
Navier-Stokesa model of mean turbulent flow have bee
found. The predictions of the model agree well with ava
able experiments for classical wakes, though the differe
between mixing-length theory and the present results for
planar wake may be considered insignificant. Our meth
also paves the way for an explicit estimation of the dissi
tion coefficient from experimental data. The strength
Navier-Stokesa model lies in the fact that self-similar solu
tions and exponents agreeing with experimental data ap
automatically without the need of extra assumptions. T
testing of Navier-Stokesa equations in the boundary-laye
limit has the extra advantage that any ambiguity in t
choice of the dissipation coefficientL is removed by the
scaling. The result is that only a one-parameter fit to exp
mental data is required.

The variablea(x) was chosen to be proportional to th
width of the boundary layer to assure self-similarity. This
the only physically feasible choice sincea is the rms of
Lagrangian fluctuations of the particle position. In a turb
lent boundary layer, fluid particles can move across
boundary layer, so the fluctuation amplitude at a given po
is approximately equal to thickness of boundary layer at t
point, and the rms of fluctuations are thus of the order
boundary-layer thickness as well.

The two features of Navier-Stokesa model (L@n anda
being of the same order as boundary-layer thickness! clearly
invoke analogy with the standard mixing-length theory
turbulence. Numerically, these two completely different a
proaches yield similar results. Since the derivation of
Euler a equation is rigorous, the main weakness of t
Navier Stokesa model lies in complete lack of theory for th
4-6
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dissipation term, and a rigorous derivation of this term wo
be of paramount importance.
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APPENDIX: SOME DETAILS OF SOLUTIONS

1. Dragless wakes in two dimensions

Inserting Eq.~25! into Eq. ~17! gives the boundary-value
problem

F912hF816F50; F8~0!50, F~`!50,

with solution

F~h!5Ce2h2
H2~h!, ~A1!

where the second Hermite polynomial isH2(h)54h222.
The constantC determined from Eq.~24! is C5J2/16Ap.
Compatible forms forw(x,y) anda(x) are

w~x,y!5Cx23/2f ~h!, a~x!5a0x1/2,

which, when inserted into Eq.~16b!, yields

f 92l2f 5~4h222!e2h2
, ~A2!

wherel254/a0
2. The solution of Eq.~A2! satisfying the van-

ishing boundary conditions at infinity is Eq.~27!.

2. Axisymmetric wakes with drag

A convenient choice for the similarity variable ish
52r /Az and insertingw15z21F(h) into Eq. ~29a! yields
the boundary-value problem
S

03630
d

.
.

is
a

F91
1

h
F8524F22hF8; F8~0!50, F~`!50,

with solutionF(h)5Ce2h2
. From Eq.~28!, one obtainsC

5D/p. The equation forw is determined from Eq.~29b!.
Insertingw1 andw5Cz21f (h) in Eq. ~29b! with the choice
a25a0

2z, l254/a0
2 yields

f 91
1

h
f 82l2f 5e2h2

. ~A3!

The homogenous solutions areI 0(lh) andK0(lh). A par-
ticular solutionf p(h) obtained by variation of parameters

f p~h!52I 0~lh!l2E
0

h
tK0~lt !e2t2 dt

1K0~lh!l2E
0

h
tI 0~lt !e2t2 dt. ~A4!

Thus, the general solution isf (h)5C1I 0(lh)1C2K0(lh)
1 f p(h), whereC1 and C2 are determined from boundar
conditions. AlthoughK0(lh) in Eq. ~A4! is singular ash
→0, the integral multiplying it is of orderh2 so the entire
term remains regular. Therefore, the singularC2K0(lh)
component of the homogeneous solution is necessarily z
i.e., C250.

In the limit h→`, the term multiplyingI 0(lh) in Eq.
~A4! becomes

l2E
0

`

tK0~lt !e2t2 dt52sesEi~2s![C1~s! , ~A5!

wheres5l2/4. This leads to the formula~30!.
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